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Reflections of weak shock waves over wedges are investigated mainly by considering 
disturbance propagation which leads to a flow non-uniformity immediately behind a 
Mach stem. The flow non-uniformity is estimated by the local curvature of a smoothly 
curved Mach stem, and is characterized not only by a pressure increase immediately 
behind the Mach stem on the wedge but also by a propagation speed. In the case of 
a smoothly curved Mach stem as is observed in a von Neumann Mach reflection, the 
pressure increase behind the Mach stem is approximately determined by Whitham’s 
ray-shock theory. The propagation speed of the flow non-uniformity is approximated 
by Whitham’s shock-shock relation. If the shock-shock does not catch up with a point 
where a curvature of the Mach stem vanishes, a von Neumann Mach reflection 
appears. The boundary on which the above-mentioned condition breaks results in the 
transition from a von Neumann Mach reflection to a simple Mach reflection. This idea 
leads to a transition criterion for a von Neumann Mach reflection, which is 
algebraically expressed by x1 = xs where x1 is the trajectory angle of the point on the 
Mach stem where the local curvature vanishes and is approximately replaced by xs - Ow 
(x, is the angle of glancing incidence, and 8, is the apex angle of the wedge) and xs is 
the trajectory angle of Whitham’s shock-shock, measured from the surface of the 
wedge. For shock Mach numbers of 1.02 to 2.2 and a wedge angle from 0” to 30°, the 
domains of a von Neumann Mach reflection, simple Mach reflection and regular 
reflection are determined by experiment, numerical simulation and theory. The present 
transition criterion agrees well with experiments and numerical simulations. 

1. Introduction 
When a planar shock wave reflects over wedges, various reflection patterns appear 

depending on the shock Mach number M ,  and the wedge angle 8, (Ben-Dor 1991). In 
particular, when a weak shock wave reflects over a wedge of small Ow, the reflection of 
the weak shock appears to be something similar to a simple Mach reflection (SMR). 
However, the classical theory, that is, von Neumann’s three-shock theory (von 
Neumann 1945), does not always have a physically acceptable solution for this shock 
reflection pattern. Such a discrepancy between experimental observation and the 
theory was first pointed out by Birkhoff (1950), who first referred to this discrepancy 
as the ‘von Neumann paradox’.? This terminology originated from the fact that some 

Jahn (1957) and Ben-Dor & Takayama (1992) generalized this paradox and subdivided it 
into two; according to Ben-Dor & Takayama, the ‘first’ and ‘second’ ones. The first one corresponds 
to the contradiction implied by the existence of a regular reflection RR which is not consistent with 
the two shock theory. The second one corresponds to the contradiction which arises when a shock 
reflection pattern resembling a SMR in shape does not conform to the three-shock theory. This study 
is concerned with the investigation of the second von Neumann paradox. 
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experimental results did not agree with von Neumann’s theory. This terminology - for 
which von Neumann is not responsible-is a misnomer and often causes mis- 
understanding of the related phenomena. The terminology, nevertheless, has already 
become well known among gasdynamicists (Colella & Henderson 1990; Ben-Dor 
1991). The essential aspects of this enigmatic problem consist of two questions; first, 
why that shock reflection pattern appears, and second, under what conditions such a 
reflection pattern appears. The first question is linked to ‘Why does a Mach reflection 
appear?’ The best answer to this question must, in short, settle the von Neumann 
paradox or the weak shock discrepancy. The second question is most important from 
a scientific and engineering point of view; weak shock waves commonly appear in 
condensed matter. Reviews of this problem have been presented by Sakurai et al. 
(1989), Reichenbach (1990), Brown (1992) and Ben-Dor & Takayama (1992). 

Ben-Dor (1991) categorized the patterns of possible shock reflections either as 
regular or irregular reflections. The class of irregular reflections was further subdivided 
into von Neumann reflections (Colella & Henderson 1990; Ben-Dor 1991) and Mach 
reflections. The von Neumann reflection corresponds to the second von Neumann 
paradox (see footnote). Another characteristic of the von Neumann reflection observed 
in experiments is that an incident shock (‘I’ shock) and a Mach stem (‘M’ shock) 
appear to be a single wave with a smoothly turning tangent. For the sake of simplicity, 
such a shock wave will hereinafter be referred to as an ‘IM’ shock. If one denotes any 
shock reflection in which a reflected wave (‘R’ shock) is detached from a wall by a 
Mach reflection MR, the above categorization can be slightly changed. In this case, the 
above-mentioned shock reflection pattern may be named a Mach reflection of the von 
Neumann paradox type, or simply, a ‘von Neumann Mach reflection NMR’. In this 
paper, an NMR is defined by a Mach reflection in which an IM shock is continuously 
curved from its foot to the incident shock. The R shock can be a sound wave. 

In the case of SMR, if the effect of viscosity is significant, the intersection of the IM 
shock with the R shock spreads over a region of finite dimensions. In this region, the 
variations of pressure and flow deflection angle become continuous. This shock 
reflection pattern does not belong to that predicted by the three-shock theory. Sakurai 
(1964) adapted the effect of viscosity in order to interpret the curvature distribution of 
the NMR. Using a perturbation method, he obtained first-order solutions in which a 
local curvature of the IM shock was a maximum just below the intersection point of 
the M shock with the I shock. His solution agreed with experimental observation of 
shock reflection patterns which the three-shock theory was unable to predict. 

In the absence of viscosity, as is explained by Sternberg (1959), if the three shocks 
intersect with one another at a point, the IM shock cannot have a finite curvature at 
the point of intersection with the R shock. However, this restriction does not hold if 
the jump of the flow variables across the reflected wave is infinitesimally small, in other 
words, if the reflected wave at the intersection is not a shock wave but a compression 
wave. Colella & Henderson (1990) numerically simulated NMRs and clarified the 
structure of the reflected shock. Their numerical simulation, using a mesh refinement 
technique, showed that the reflected wave is not a shock wave but in fact appears to 
consist of smoothly distributed compression waves in the region where it interacts with 
the IM shock. The intersection of these compression waves with the M shock is not a 
single point but spreads over some length. They still postulated that the leading edge 
of the intersection of the compression waves with the M shock was a triple point, and 
concluded that since the reflected wave does not appear to be a discontinuity, the three- 
shock theory cannot be applied at the triple point. Their analysis, even without taking 
into account the effect of viscosity, well explains the relations between the IM shock 
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and the R shock in an NMR, and clarifies why the three-shock theory cannot be 
applied to the NMR. 

In the three-shock theory, an M shock is assumed to be straight. However, Glass 
(1987) pointed out as a general remark on Mach reflection that an M shock can indeed 
have finite curvatures, which causes inaccurate prediction of the pattern of shock 
reflections by misusing the three-shock theory. If the gradient of flow variables behind 
the IM shock is finite, the IM shock has a continuously varying curvature along the 
entire IM shock (discussed in detail in 92). In such weak shock reflections, the effect 
of the finite curvature of the IM shock becomes significant. The physical significance 
associated with the local curvature of the M shock still warrants further investigation 
(Ben-Dor & Takayama 1992). 

Olim & Dewey (1992) revised von Neumann’s three-shock theory and assumed that 
the shape of the M shock was an arc of a circle centred on the wedge surface. This 
assumption, together with another major revision, effectively leads to better agreement 
with experimental shock reflection patterns than von Neumann’s three-shock theory. 

Lighthill (1949) obtained analytically the local curvature of the M shock. In his 
analysis, disturbances are assumed to be small enough to justify a linearized analysis, 
that is, to treat the reflected shock as a sound wave. His solution becomes 
asymptotically accurate for an infinitesimally small inclination angle of the wedge. 
However, the solution becomes inaccurate as the inclination angle of the wedges is 
increased. 

Tanno (1991) and Sasoh, Takayama & Saito (1992) analysed the variation of local 
curvature along the M shock of NMRs. Experiments and numerical simulations were 
conducted for shock Mach number of 1.15. The results obtained by Sasoh et al. (1992) 
showed that on the M shock two special points exist; one is a point at which the 
curvature vanishes and the other is a point at which the curvature is a maximum. The 
trajectory of the latter point was found to agree well with that of Whitham’s 
shock-shocks. Although the physical meaning of the point of maximum curvature is 
not yet fully understood, the point at which the curvature vanishes and that of 
maximum curvature are closely related to flow mechanisms of how the corner 
disturbance catches up with the I shock. Therefore, the weak shock reflection should 
be discussed by taking the propagation of disturbances along the M shock into 
account. 

In this paper, in order to generalize the weak shock reflection phenomena, results of 
further investigation which mainly illustrate the propagation of disturbances along and 
behind the IM shock are presented. Details of the present experimental and numerical 
methods have been presented in Sasoh et al. (1992). The test gas was air. A brief 
description of the present techniques is provided for completeness in Appendix A. Very 
weak planar shock waves were generated using a shock tube in which a reusable thin 
rubber membrane, instead of rupturing a Mylar diaphragm, was used (Yang, Onodera 
& Takayama 1994). This shock tube reproduces shock Mach number M ,  with scatter 
of 00.2%. Only by using this highly reproducible shock tube were planar shock 
waves with consistent M ,  ( M ,  < 1.1) experimentally produced (see also Appendix A). 

2. Estimation of flow non-uniformity generated by a wedge 
Assume a two-dimensional, and self-similar IM shock as shown in figure 1. The IM 

shock consists of an incident shock (I shock) and a Mach stem (M shock) which 
intersect tangentially. The M shock is defined by the curved part of the IM shock 
(Sasoh et al. 1992). PI denotes the intersection point between the I and M shocks. 
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FIGURE 1. Wave shape of a smoothly curved IM shock. 

Along the IM shock, take the s-coordinate and its origin Po at the foot of the IM shock 
on the wall. The reflected shock is so weak that flow variables immediately behind the 
IM shock can be calculated from the Rankine-Hugoniot relations for oblique shock 
waves. 

In the following discussions, all lengthscales are normalized by the horizontal 
distance between the leading edge of a wedge and an incident shock, that is, 1, = 1 in 
figure 1. Normalized length parameters are denoted by lower cases. I is a pointing 
vector from the leading edge of the wedge to a point on the IM shock. n and t are unit 
V C L L U I D  WIIILII LLlC IULLLlly l l U l l l l d l  LLllU l d 1 1 ~ C l l l  L U  LllC l l V l  B I I U L K ,  I C S ~ C L L I V C I Y .  

The local shock strength is given from the local pressure ratio across the IM 
shock by 

-= P 1+- 2Y 
P O  y+16, 

E = M,2]1..12- 1, (2) 

where y is a specific heat ratio, M ,  is the shock Mach number of the I shock. 
The gradient of 6 in the tangential direction is calculated from (2), such that (see 
Appendix B), 

ds 
ds - = 2M3Z.n) ( I .  t )  K, (3) 

where K is a local curvature of the IM shock. For an IM shock which is concave toward 
the direction of propagation, as is usually observed in an NMR, K has a negative value. 
Equation (3) implies that if the local curvature vanishes, that is, on the straight part of 
the IM shock, E is constant and the flow behind the IM shock is uniform. A curved 
shock is associated with a flow non-uniformity behind it. 

Figure 2 shows examples of s distributed along the IM shock. Since the IM shock, 
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FIGURE 2. Distribution of E along a Mach stem. M ,  = 1.15, 8, = 15”. 

FIGURE 3. Smoothly curved IM shock and its approximated shape, IM’ shock 
(Whit ham’s shock-shock) . 

as observed in the experiment or in the numerical simulation, has a continuously 
distributed finite curvature, in other words, the IM shock is smoothly curved, the E 
distribution is also continuous. e is largest on the wedge (at Po), and is smallest on the 
I shock. 

As shown in figure 3, the actual shape of the IM shock can be approximated by the 
combination of two planar shock waves. The lower planar shock wave (M’ shock) 
starts from Ph and is normal to the wedge surface, the upper one is the extension of the 
I shock. This configuration of the IM’ shocks appears to be similar to the shape 
assumed in Whitham’s ray-shock theory (Whitham 1957), from which the concept of 
a shock-shock is derived. The intersection P, between these two planar shocks is 
referred to as a shock-shock. With a given combination of M, and Ow, the theory 
determines a unique condition behind the IM’ shocks, that is, a unique combination 
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FIGURE 4. A6 us. 8,. 

of ~ 1 ;  the trajectory angle of the shock-shock measured from the wedge surface, 1 ; ;  the 
distance from the leading edge of the wedge to P; and Mh; the local shock Mach 
number on the wedge. 1; does not necessarily equal 1, of the IM shock. The E 

distribution along IM’ shock is shown also in figure 2. On the straight shock, E is 
constant. Change in E occurs only at P, where K becomes infinity. 

Here, let one characterize a flow non-uniformity which is generated by a wedge by 

which is the increase in e on the wedge relative to e on the I shock. As long as one 
neglects viscosity, the present problem is expressed solely in terms of (x / t ,  y / t )  
coordinates (Jones, Martin & Thornhill 1951), implying tbat, as has been implicitly 
assumed, the shock shape is self-similar with the elapse ‘of time. Therefore, Ae is 
determined only from M ,  and lo, and is independent of a curvature distribution 
between Po and PI. Figure 4 shows the dependence of A& on 0, and M,. AE which is 
determined from the experiments is very close to that determined by the numerical 
simulations. Moreover, the prediction of Ae by the angle of Whitham’s shock-shock 
with the same combination of M, and Ow is also close to the above two estimates. In 
other words, A& is correctly approximated from Whitham’s ray-shock theory even 
though the actual shock shape does not have such a kink point as the shock-shock 
does. This tendency is in agreement with the experimental observation by Olim & 
Dewey (1 992). 

3. Propagation of flow non-uniformity 
In Whitham’s ray-shock theory, the trajectory of a shock-shock corresponds to that 

of a flow non-uniformity propagating along the shock, which is generated by a 
difference in pressure between two planar shock waves. 
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Trajectory of P, 

of shock-shock 

FIGURE 5 .  Propagation trajectory of disturbances which are generated on a wedge when the IM 
shock passes. M ,  = 1.15, @, = 8”. 

Along a smoothly curved shock wave, the propagation of disturbances can be 
analysed using the CCW theory (Chester 1954; Chisnell 1957; Whitham 1957), in 
which the above Whitham’s ray-shock theory is included. Applying the CCW theory, 
the propagation speed of a local disturbance along a smoothly curved shock wave is 
given by (Whitham 1957) 

c+ = IZ.nl(n+ttanm), ( 5 )  

A(M,)= 1+-- l-p2)(1+2p+K 7 , ( Y + l  P 
(7) 

M ,  = M,(Z.n), (9) 

where m is an angle between c, and n (see figure 1). Here, c,  represents a wave along 
the IM shock on which a Riemann invariant is constant (this wave may be referred to 
as a ‘shock characteristic’). It is noted that the propagation speed of c, is assumed to 
be determined only by the local shock strength - the effect of non-uniformities in the 
flow field downstream of the IM shock is not taken into account. 

Figure 5 shows propagation trajectories of a disturbance which is generated on the 
wedge when the IM shock passes. The direction of the propagation is calculated by (6). 
As seen in this figure, a limiting line exists for the propagation of the disturbances. On 
the limiting line, c, is parallel to 1. 

Owing to the self-similarity, flow variables immediately behind the IM shock are 
constant along lines which pass through the leading edge of the wedge. The speed of 
propagation of disturbances given by ( 5 )  corresponds solely to disturbances generated 
by a local flow non-uniformity immediately behind the IM shock, that is, by the 
curvature of the IM shock (see equation (3)). The shock shape or flow variables 
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FIGURE 6. Trajectory angles of P, and of Whitham’s shock-shock. (a) M,  = 1.05, (b) M,  = 1.15, 

( c )  M, = 1.50 .0 ,  experiment; 0, numerical simulation. 

immediately behind the IM shock are determined not only by such disturbances but 
also by those which are corhuously generated at points away from the IM shock. The 
existence of the limiting line implies that only below this limiting line is local shock 
shape influenced by the disturbances which are generated by the wedge when the 
IM shock passes. In such a weak shock reflection (as is shown in figure 9, the IM shock 
is curved even above the limiting line. Here, Pp is defined as a point located on the 
limiting line. Between PI and Pp, the IM shock is influenced by disturbances originating 
at points far from the IM shock and propagating through the non-uniform flow field 
behind the IM shock. A disturbance which propagates to PI corresponds to that 
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generated at the leading edge when the IM shock passes (Sasoh 1992, this disturbance 
will hereinafter be referred to as the first ‘ leading-edge disturbance ’). 

The condition that c, becomes parallel to a line which passes through that point and 
the leading edge is 

(10) 
Above Pp where (10) is satisfied, l e t  > (1.n) tanm. Below Pp, the inequality sign 
reverses. 

It is found in figure 6 that the trajectory angle of Pp is very close to P, of Whitham’s 
shock-shock. In Whitham’s ray-shock theory, the trajectory of the shock-shock is also 
a limiting line of the propagation of disturbances generated on the wedge. Therefore, 
Pp on a smoothly curved IM shock is equivalent to P, for Whitham’s ray-shock theory. 
It follows that even on a smoothly curved IM shock the propagation of the flow non- 
uniformity generated by a wedge is characterized by the trajectory of Pp, which is 
approximately determined by the trajectory of Whitham’s shock-shock. 

1 s t  = c,-t = (1.n) tanm. 

4. Transition criterion 
Domains of shock reflection patterns for various combinations of small Ow and weak 

shock wave as observed in experiments and numerical simulations are shown in figures 
7(a) and 7(b). Three shock reflection patterns exist as follows: 

[A] von Neumann Mach reflection NMR (see figure 8a), 
[B] Simple Mach reflection SMR, 
[C] Regular reflection RR. 

Here, a shock reflection pattern in which the length of the M shock is smaller than the 
resolved shock thickness is classified as a RR; otherwise, it is a Mach reflection. In 
Mach reflections, a shock reflection pattern in which the minimum radius of curvature 
is smaller than the resolved shock thickness is classified as a SMR; otherwise it is 
classified as a NMR. This S M R t t  NMR transition criterion will hereinafter be 
referred to as the ‘finite curvature criterion’. Even under conditions close to the 
transition, a shock shape only gradually changes with M, or Ow, thereby causing 
uncertainty in determining the transition boundaries. Comparing figure 7 (a) with 
figure 7 (b), however, reflection patterns experimentally observed agree with those 
observed in the numerical simulation within this uncertainty. 

In the present study, one can regard a wedge as a disturbance generator. The 
disturbance behind the IM shock is first generated when the IM shock passes the 
leading edge of the wedge, The condition for maintaining such a smoothly curved 
shock shape of the IM shock is that the first-generated leading-edge disturbance 
intersects with the IM shock (at Pl) above P,. From Pp to Pl, the shock shape is 
determined mainly by the leading-edge disturbances. If the leading-edge disturbances 
are weak enough, they do not generate a steep flow non-uniformity behind the IM 
shock. In this case, the IM shock still maintains its smoothly curved structure (Colella 
& Henderson 1990; Ben-Dor & Takayama 1992). This condition is equivalent to the 
condition that the trajectory angle of Pl is larger than that of P,, the latter being 
approximately determined by the trajectory angle of Whitham’s shock-shock, x,. 
Therefore, the SMR e, NMR transition criterion, that is the finite curvature criterion, 
is expressed by 

In (1 l), x1 denotes the trajectory angle of Pl measured from the wedge surface. If a wedge 
x1 = X S .  (1 1) 
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FLGURE 7. Domains of shock reflection patterns observed in the experiment and the numerical 
simulation. 6 is an inverse pressure ratio across the incident shock. (a) Numerical simulation, the left- 
hand broken line represents the condition of xg-Bw = 0, the right-hand one the condition of 
xg - 8, = x,. The solid lines are observed boundaries among different reflection patterns. (b) 
Experiment, the broken lines are the boundaries observed in the numerical simulation shown in (a). 
0 ,  NMR; a, SMR; ., RR. 

FIGURE 8. Reconstructed interferogram. (a)  M ,  = 1.15, 0, = 15" (NMR), (6) M, = 1.05, H,, = 25" 
(close to SMR t, NMR and SMR t-* RR transition boundaries). 
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angle is small enough to neglect the effect of compression caused by the wedge, the 
leading-edge disturbances propagate with nearly the speed of sound. In this case, x1 is 
calculated by (Ames 1953) 

(M,2-1)(2+(y-l)Ms2} 
tanX1 = tanXg = 

For small 8,, x1 is approximately given by ~ ~ - 8 , .  The stronger the leading-edge 
disturbance is, the less accurate this approximation becomes. 

As is seen in figure 7 (a), for small 8,, xg - 8, = xs agrees well with the SMR - NMR 
transition boundary observed in the experiment and numerical simulation. However, 
this estimation of the transition boundary becomes progressively less accurate for 
larger 8, because here x1 is approximated by xg - 8,. 

In the same way, the SMR - RR transition criterion is expressed by 

x1 = 0. (13) 
In Region [C], xs is smaller than 8,; to the zeroth approximation, even leading-edge 
disturbances cannot catch up with the I shock above the wedge. x1 monotonically 
decreases with increasing 8,. With increasing 0, and keeping M ,  constant, the 
NMR - SMR transition occurs always before the SMR f-) RR transition does, because 
xs has a positive value except for xs = 0 at M ,  = 1. However, for very weak incident 
shock waves ( M s  d l.05), the domain of SMR is very narrow. A shock reflection close 
to the transition boundaries is shown in figure 8(b). 

As mentioned in $2, an NMR has two major characteristics; first, the three-shock 
theory does not have a physically acceptable solution; and secondly, it has finite 
curvature distribution throughout an IM shock. The above mentioned SMR- NMR 
transition criterion, equation (1 l ) ,  is based on the second characteristic. 

Colella & Henderson (1990) proposed another type of transition criterion for an 
NMR. In their experiment, shock reflection pattern begins to deviate from that 
predicted by von Neumann’s three-shock theory under the condition of p1 = fn (p, ; 
angle between a reflected shock and a slip line, Henderson 1987; Colella & Henderson 
1990). This transition criterion will hereinafter be referred to as the ‘PI = fn criterion’. 
The p1 = in criterion places an experimentally observed limit of applying the three- 
shock theory, thereby corresponding to the first characteristic of an NMR. Although 
the /?, = in criterion corresponds to a condition for the SMR-NMR transition, the 
quantitative accuracy of this criterion has not yet been fully determined. In the three- 
shock theory, the M shock is assumed to be straight - the curvature equals zero except 
at a triple point. If the effect of curvature variation along the M shock is taken into 
consideration, the p1 = in condition can be changed, giving a different transition 
boundary. 

In figure 9, some transition boundaries are shown. One corresponds to the finite 
curvature criterion which is obtained by the present experiments and numerical 
simulations. Another corresponds to the condition of ~ ~ - 8 ,  = x,, which is an 
approximate algebraic expression of the finite curvature criterion. The others 
correspond to the p, = in criterion and to the detachment criterion, the latter of which 
corresponds to the limit of physically acceptable solution to the two-shock theory 
(Henderson 1987). 

Within the uncertainties associated with the above-mentioned data processing and 
the algebraic approximation, xg - BW = xs agrees with the finite-curvature criterion. 
However, these two estimates do not coincide with the pl = in criterion. 

Olim & Dewey (1992) suggested from their experimental observation that in a (d,, 
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FIGURE 9. Three NMR- SMR transition boundaries; (i) finite curvature criterion observed in the 
experiments and the numerical simulations (figure 7a, b), (ii) xB-Ow = x, and (iii) ,8, = $r criterion, 
and a RR c-) SMR transition boundary; (iv) detachment criterion. 

MJ-plane, there exists a region in which an IM shock has a kink at the intersection 
with the R shock though the three-shock theory does not have any physically 
acceptable solutions (they named such a shock reflection pattern a ‘weak Mach 
reflection’. In this paper, this shock wave reflection pattern is categorized into an SMR 
because it has a kink). Region [A’] in figure 9 between the curves corresponding to the 
,8, = in criterion and to the finite-curvature criterion may represent the pattern of this 
shock reflection. The existence of Region [A]  may lead to a compromise with the 
difference between the finite-curvature criterion and the ,8, = fn criterion. 

Both of the finite-curvature criterion and the p1 = in criterion discriminate between 
a different weak shock reflection pattern with an SMR. In order for that weak shock 
reflection pattern to appear, the shock wave need not necessarily be weak. As is seen 
in figures 7 ( a )  and 7(b),  an NMR appeared even for 6 < 0.2 (or M ,  > 2). This may 
imply that the condition for an NMR is based not on the strength of a shock wave itself 
but on the strength of the disturbances generated by the wedge surface. In this way, 
these two criteria describes the same physics but using different formulations. The 
quantitative relation between these two criteria warrants further investigation. 

5. Conclusion 
A flow non-uniformity generated by a wedge can be characterized by A€. Even for 

a smoothly curved shock front shape, Ae is approximately determined from Whitham’s 
ray-shock theory. The propagation trajectory of this flow non-uniformity is 
represented by the trajectory of P, which is the limiting line of the propagation of 
disturbances generated at the wedge when an IM shock passes. The trajectory of P, is 
approximately determined by that of Whitham’s shock-shock, which is analytically 
determined solely by giving M ,  and 8,. As long as P, does not catch up with Pl, the 
IM shock maintains its smoothly curved structure, thereby forming an NMR. When 
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the disturbance generated by a wedge becomes strong enough for Pp to catch up with 
PI, an NMR terminates and an SMR appears. 

From the above-mentioned idea, a new transition criterion for an NMR, the finite- 
curvature criterion, has been developed. This criterion discriminates between a shock 
reflection pattern in which an IM shock does not have a kink and a SMR. The criterion 
is algebraically expressed by x1 = xs or approximately ~ ~ - 8 ,  = xs. The condition that 
the three-shock theory does not have a physically acceptable solution leads to another 
transition criterion such as the p, = in criterion. These two transition criteria do not 
coincide with each other. Quantitative relation between these two criteria warrants 
further investigation. 

At any event, the (second) von Neumann paradox is caused by limitations in the 
application of the three-shock theory to shock reflection patterns in which the flow field 
around such a distinct point as a triple point in an SMR is not sufficient to determine 
the entire reflection characteristics. In order to fully understand such weak shock wave 
reflections, clarification of the role played by disturbance propagation is essential. 
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Appendix A. Methods of experiment and numerical simulation 
Experiments are conducted using a 60 mm x 150 mm cross-sectional shock tube 

equipped with a holographic interferogram. In order to test for a wide range of M,, two 
driver sections were used; one for M ,  = 1.05 - 1.20, another for M ,  2 1.15. A flexible, 
thin rubber membrane which moves quickly and consistently was used in place of a 
conventional Mylar diaphragm (Yang et al. 1994). This driver system enabled very 
weak planar shock waves to be generated. Scatter of M ,  was considerably 
improved - within 0.2 YO. However, this apparatus limits, owing to the strength of the 
membrane, the M,  only to a weak shock region. Another driver section utilizes Mylar 
diaphragm. The thickness of a diaphragm determines its rupture pressure. This 
conventional type driver section was used to generate relatively strong plane shocks 
M ,  2 1.15. The error in M ,  by this driver section was 3 %. 

A flow-visualization experiment was carried out using double exposure holographic 
interferometry (Takayama 1983). In this study, only weak shock waves were treated. 
Therefore, fringes in a reconstructed hologram correspond to isopycnics. Sensitivity of 
one fringe shift is approximately 4% of the density under the standard condition. A 
shock shape was identified from an unreconstructed hologram, which is equivalent to 
a shadowgraph, using the combination of a CCD camera and an image processor 
(SPICA-2, Japan Avionics). The image of the hologram is converged into 480 x 400 
pixel data. 

Numerical simulation was conducted using Harten and Yee’s TVD finite difference 
scheme (Harten 1983; Yee 1987) applied to the two-dimensional unsteady Euler 
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equations. 800 x 250 grid points covered a computational domain. Downstream 
boundary conditions were determined by normal shock relations associated with a 
given M,. Computation was conducted until flow at boundaries, except on the wedge, 
became disturbed by reflected waves. In the numerical simulation, the shock shape was 
identified by an isopycnic of an appropriate value. A Cray YMP 8/8128 of the 
Supercomputer Center, Institute of Fluid Science, Tohoku University was used. 

Both in the experiment and in the numerical simulation, a shock shape which was 
given by discrete data was processed by a smoothing technique in which a B-spline 
function was used. The shape of the IM shock of present interest does not have a kink 
point but has a continuous curvature distribution. Under this restriction, the selection 
of the order and the number of the nodes was carefully made. If the order of the spline 
function is too high, the calculated curvature contains high wavenumber components 
which are physically meaningless. As long as the second derivative of a shock shape 
was continuous but not constant, the order of the spline function was selected to be as 
low as possible; a third order with two nodes, or a fourth order when the number of 
the nodes exceeded two. The number of the nodes, two to four in this study, was 
selected so as to obtain the best fit to the discrete data. Because of a finite spatial 
resolution, the calculated value of the curvature is finite. In cases where the radius of 
curvature was found to be smaller than the spatial resolution, the curvature was set to 
be infinite. The spatial resolution is determined by the observed thickness of an IM 
shock. In the experiment, the thickness depends on the quality of the shadowgraph. In 
the numerical simulation, it depends both on numerical viscosity and on grid spacing. 

Appendix B. Derivation of equation (3) 

are as follows: 
On the (x, y)-coordinates in figure 1 (the origin is Po), the components of I ,  n and t 

I = (“:”), 

Here, the shape of the IM shock is expressed by x = x( y). Using the relations; 

1 d - d 
ds 
- _  

[ 1 + (dx/dy)’]]’/’ & ’ 
- d2X/dy2 

= [ 1 + (d~/dy)~] l” /~  ’ 

the following simple relations are derived : 

dl  
ds 
- _  - t ,  

dn 
ds 
- = K t .  
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From (2), (A 6) and (A 7 ) ,  using the relation t - n  = 0, 

= 2M,2(1.n)[t.n+Z-(Kt)] 

= 2 M 3 .  n) ( I *  r )  K. 
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